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A common coupled fixed point theorem
in intuitionistic Menger metric space

BEN AOUA LEILA AND ABDELKRIM ALIOUCHE

ABSTRACT. We establish a common fixed point theorem for mappings
under ¢-contractive conditions on intuitionistic Menger metric spaces.
As an application of our result we study the existence and uniquenes of
the solution to a nonlinear Fredholm integral equation. We also give an
example to validate our result.

1. INTRODUCTION

Many generalizations of the concept of a metric space can be obtained
by modifying the requirements placed on the distance function. One such
generalization is that of Menger spaces, first introduced by Menger [1] and
developed by Schweizer and Sklar [2-4|, Chang et al. [5], and others [6-8]. In
Menger’s theory; the concept of distance d (z;y) between two points x and
y is considered as probabilistic, namely, the non-negative number d (x,y)
is replaced by a distance distribution function Fy, : R — RT. Then, for
any real number ¢, the value F, (t) is interpreted as the degree of nearness
between x and y with respect to t. Modifying the idea of Kramosil and
Michalek [9], George and Veeramani [10]| introduced fuzzy metric spaces
which are very similar that of Menger space [7,8,11]. Recently, Park [22]
introduced the notion of intuitionistic fuzzy metric spaces as a generalization
of fuzzy metric spaces.

In [19] Bhaskar and Lakshmikantham introduced the notion of coupled
fixed point and mixed monotone mappings and gave some coupled fixed
point theorems. Bhaskar and Lakshmikantham [19] apply these results to
study the existence and uniqueness of solution for periodic boundary value
problems. Lakshmikantham and Ciric [20] introduced the concept of cou-
pled coincidence point and proved some common coupled fixed point theo-
rems.Sedghi et al [21] gave a coupled fixed point theorem for contractions
in fuzzy metric spaces. On the other hand,integral equations arise in many
scientific and engineering problems.A large class of initial and boundary
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value problems can be converted to Volterra or Fredholm integral equations.
The potential theory contributed more than any field to give rise to inte-
gral equations. Mathematical physics models such as diffraction problems,
scattering in quantum mechanics, conformal mapping and water waves also
contributed to the creation of integral equations.Many other applications
in science and engineering are described by integral equations or integro-
differential equations.The Volterra’s population growth model, biological
species living together, propagation of stocked fish in a new lake,the heat
radiation are among many areas that are described by integral equations.
Many scientific problems give rise to integral equations with logarithm ker-
nels. Integral equations often arise in electrostatics, low frequency electro-
magnetic problems, electromagnetic scattering problems and propagation of
acoustical and elastical waves.

In this paper,we prove a common fixed point theorem for mappings un-
der ¢-contractive conditions on intuitionistic Menger metric spaces. As an
application of our result we study the existence and uniquenes of the solu-
tion to a nonlinear Fredholm integral equation. We also give an example to
validate our result.

2. PRELIMINARIES

Definition 2.1 ([1]). A binary operation % : [0;1] x [0;1] — [0;1] is a
continuous t-norm if * satisfies the following conditions

a) * is commutative and associative,

b) * is continuous,

c) ax1=a for all a € [0;1],

d) a*b < c*d wherever a < ¢, b<dand a,b,c,d € [0;1].

Examples of t-norms are a * b = min {a, b} and a * b = ab.

Definition 2.2 ([1]). A binary operation ¢ : [0;1] x [0;1] — [0;1] is a
continuous t-conorm if { satisfies the following conditions

(a) ¢ is an commutative and associative,

(b) ¢ is continuous,

(¢) a®0 = a for all a € [0; 1],

(d) aQb > cOd wherever a > ¢, b > d and a,b,c,d € [0;1].

Examples of the t-conorms are a{b = max{a, b} and a0b = min{1, a+b}.

Remark 2.1. The concept of triangular norms (¢-norms) and triangular
conorms (t-conorms) are known as the axiomatic sketlons that we use for
characterizing fuzzy intersection and union respectively. These concepts
were originally introduced by Menger [19] in his study of statistical metric
spaces.

Definition 2.3 (|7]). Let supo<i<1A (¢,t) = 1.A t-norm A is said to be of
H-type if the family of functions {A™ (¢)}°_, is equicontinuous at ¢ = 1,
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where
(2.1) A1) =tAt, AT () = tA(A™ (t)), m=1,2,...,t€[0,1]

The t-norm Aj; = min is an example of t-norm of H-type,but there are
some other t-norms A of H-type [7].

Obviously, A is a H-type t-norm if and only if for any A € (0,1), there
exists 0 () € (0,1) such that A™ (¢) > 1 — A for all m € N, when ¢t > 1 — .

Definition 2.4 (|23]). Let infoci<1 V (¢,) = 0. A t-conorm V is said to be
of H-type if the family of functions {V™ (¢)},°_, is equicontinuous at t = 0,
where

(2.2) V() =tVt, V™= (t) =tV (V™ (t)), m=1,2,...,t€[0,1]

The t-conorm V); = max is an example of t-conorm of H-type.
Obviously, V is a H-type t-conorm if and only if for any A € (0, 1), there
exists d (A) € (0,1) such that V™ (¢) < A for all m € N, when ¢ < §.

Definition 2.5 ([1]). A distance distribution function is a function F' :
R — Ry which is left continuous on R, non-decreasing and infycr F' () = 0,
sup;ep F' (1) = 1.

We will denote by D the family of all distance distribution functions and
0, ift<o0,
1, ift>o0.

If X is a non-empty set, F' : X x X — D is called a probabilistic distance
on X and F'(z,y) is usually denoted by F,.

by H a special of D defined by H(t) =

Definition 2.6 ([14]). A non-distance distribution function is a function L :
R — R4 which is right continuous on R, non-increasing and infycr L (t) = 1,
sup;cr L (t) = 0. We will denote by E the family of all distance distribution
1, ift <0,
0, ift>o0.

If X is a non-empty set, L : X x X — E is called a probabilistic distance
on X and L (z,y) is usually denoted by Lg,,.

functions and by G a special of E defined by G(t) =

Definition 2.7 ([14]). A triplet (X, F|, L) is said to be an intuitionistic prob-
abilistic metric space if X is an arbitrary set, F' is a probabilistic distance
and L is a probabilistic non-distance on X satisfying the following conditions
forall z,y,2 € X and t,s > 0,

(1) Fyy (t) + Ly (t) <1,

(2) Fa:y (0) =0,

(3) Fuy (t) =1if and only if z =y,

(4) Foy () = Fya (1),

(5) If Fypy (t) =1 and Fy, (s) =1, then F, (t+s) =1,
(6) Lay (0) =1,

(7) Lyy (t) =0 if and only if x =y,
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(8) Lmy():
(9) If Lyy (t)

Definition 2.8 ([14]). A 5-tuple (X, F, L, *, {) is said to be an intuitionistic
Menger metric space If (X, F, L) is an intuitionistic probabilistic metric space
and in addition, the following inequalities hold for all z,y, z € X and t, s > 0,

(1) Fpy(t) x Fyz (s) < Fyz (t+9),
(2) Lgy (t) OLyz (s) = Ly (t+ 9),
where * is a continuous ¢t-norm and <) is a continuous {-conorm.
The functions F, and L, denote the degree of nearness and the degree
of non-nearness between x and y with respect to t respectively.

Lya (t),
=0and Ly, (s) =0, then L, (t +s) =0.

Remark 2.2. In intuitionistic Menger space (X, F,L,*,¢Q), Fyy is non-
decreasing and L, is non-increasing for all z,y € X.

Remark 2.3 (|14]). Every Menger space (X, F, ) is an intuitionistic Menger
space of the form (X, F, 1 — F x, ) such that the t-norm * and the t-conorm
{ are associated, see [13], that is xQy = 1—(1 — z)*(1 — y) for any z,y € X.

Remark 2.4. Kutukcu et al. [16] proved that if the t-norm * and the ¢-
conorm of an intuitionistic Menger space (X, F, L, , () satisfy the conditions

sup (t+t)=1and inf ((1—-¢)0(1—1¢)) =0,

te(0,1) te(0,1)
then (X, F, L,*,¢) is a Hausdorff topological space in the (¢, \) topology,
i.e., the family of sets

{Uz (,\), e>0, A€ (0,1], z € X}

is a basis of neighborhoods of point z for a Hausdorff topology 7(r 1), or
(e, A) topology on X, where

Up (e, N) ={y € X : Fpy(e) > 1 — X and Lyy(e) < A}.

Example 2.1 ([14]). Let (X,d) be a metric space. Then the metric d in-
duces a distance distribution function F' defined by Fy,(t) = H(t — d(x,y))
and a non-distance distribution function L defined by L, (t) = G(t—d(x,y))
for all z,y € X and ¢t > 0. Therefore, (X, F, L) is an intuitionistic proba-
bilistic metric space induced by a metric d. If the t-norm * is defined by
a * b = min{a, b} and the t-conorm ¢ is defined by aQb = min{1,a + b} for
all a,b € [0, 1], then (X, F, L, ,{) is an intuitionistic Menger space.

Remark 2.5 (|14]). Note that the above example holds even with the t-norm
axb = min{a, b} and the t-conorm aQb = max{a, b} and hence (X, F, L, *, ()
is an intuitionistic Menger space with respect to any t-norm and ¢-conorm.
Also note that, in the above example, t-norm * and t-conorm ¢ are not
associated.
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Remark 2.6. Every an intuitionistic fuzzy metric space (X, F, L, *, Q) is an
intuitionistic Menger space by considering F': X x X — Dand L: X x X —
E defined by Fpy(t) = M(x,y,t) and Lgy(t) = N(z,y,t) for all z,y € X

Throughout this paper, (X, F, L,*,{) is an intuitionistic Menger space
with the following conditions:
(2.3) tEeroo Fypy(t) =1 and tlim Ly (t) =0, forall z,y € X and t > 0.

—+00

Definition 2.9 ([14]). Let (X, F, L, %, ) be an intuitionistic Menger space.

(a) A sequence {,},y in X is said to be convergent to a point z € X,
if for each ¢ > 0 and € € (0, 1), there exists a positive integer ng =
no(t, €) such that for all n > ng;

(b) A sequence {z,},y in X is called a Cauchy sequence if for all £ > 0
and € € (0,1), there exists a positive integer ng = ng(t, €) such that
for all n,m > nyg

Fp 5, (t)>1—¢€eand Ly, ., (t) <¢

(¢) An intuitionistic Menger space in which every Cauchy sequence is
convergent is said to be complete.

Remark 2.7 ([14]). An induced intuitionistic Menger space (X, F, L, *, )
is complete if (X, d) is complete.

Theorem 2.1. Let (X, F,L,*,Q) be an intuitionistic Menger space.
(1) A sequence {xn},cn in X is said to be convergent to a point v € X
if and only if
lim Fp,(t)=1and lm L, ,(t)=0, forallt>0.
n—-+00

n—+oo
(2) A sequence {xyn}, oy i X is called a Cauchy sequence if and only if
lim Fy .. (t)=1and lim L, .. (t) =0, forallt>0.
n——+00

n—+oo
Lemma 2.1. Let (X, F, L, x, Q) be an intuitionistic Menger space and {zy},
{yn} be two sequences in X with x, — x and y, — y, respectively. Then:
(a) iminf, o0 Fy,y, (t) > Foy(t) and limsup,, o La,y, (t) < Lay(t) for
all t > 0.
(b) Ift > 0is a continuous point of Fyy and Ly, thenlim, o Fy, 4, (t) =
Fpy(t) and limy, o0 Ly,y, (t) = Lay(t).
(c) If  : RT — RT, where R* = [0, +00) is a function such that ¢ (0) =
0, then ¢ is called a gauge function.If t € RY, then ¢™ (t) denotes
the nth iteration of ¢ (t) and ¢~ ({0}) = {t e RY : ¢ (t) = 0}.

Definition 2.10 ([19]). An element (z,y) € X x X is called a coupled fixed
point of the mapping T: X x X — X if

T(z,y) =xand T (y,z) = y.
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Definition 2.11 ([20]). An element (z,y) € X x X is called a coupled
coincidence point of the mappings T : X x X — X and g: X — X if

T(z,y)=g(z) and T'(y,z) = g (y) -

Definition 2.12 ([20]). An element (z,y) € X x X is called a common
coupled fixed point of the mappings 7: X x X — X and g: X — X if

v=T(z,y)=g(z) and y=T (y,z) =g (y).

Definition 2.13 ([20]). An element z € X is called a common fixed point
of the mappings T: X x X - X and g: X — X if

=T (z,x) =g (x).

Definition 2.14 (|20]). The mappings T : X x X — X and g : X — X are
said to be commutative if

9T (z,y) = T (g2, gy) , for all (z,y) € X?

Definition 2.15 ([|20]). The mappings 7': X x X — X and g : X — X are
said to be compatible if

ngrfoo FgT (@) T (g2n.gya) () = 1, nEIf{loo Ly (@0,yn) T(gan,gyn) (8) = 0

and

nllffoo Fyr (g 20) T(gyn.gen) (1) = 1 nlﬂloo L1y n) T gy gn) () = 0

for all t > 0, whenever {z,,} and {y,} are sequences in X such that

lim T (zp,yn) = lim g¢g(x,)=x and BI_P T (yn,xpn) = lim g(yn) =y

n—-+o00 n—-+o0o n—-+o0o

for all z,y € X.

Remark 2.8. It is easy to prove that if T and g are commutative, then they
are compatible.

Definition 2.16 ([25]). The mappings T': X x X — X and g : X — X are
said to be weakly compatible if

T(z,y) =g (), T (y,z) =9 (y)
implies that
9T (z,y) =T (gz,9y), 9T (y,x) =T (gy,gx)
for all z,y € X.

Remark 2.9. Two compatible self-mappings are weakly compatible, how-
ever the converse is not true in general.
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3. MAIN RESULTS

In this section,the probabilistic distance L and F are assumed to satisfies
the conditions sup;~oFyy (t) = 1 and inf;n0 Ly (t) =0 for all z,y € X.

By using the continuity of %, and [26, Lemma 1], we get the following
result.

Lemma 3.1. Let n € N, let g, : (0,00) — (0,00). and let F,, : R — [0, 1].
Assume that: sup{F (t):t >0} =1 and

m g, (6)=0;  Fu(ga (D) 2« (F(£), Vt>0

n——+00
If each F,, is nondecreasing, then lim,_, o F,, (t) =1, for any t > 0.
Lemma 3.2. Letn € N, let g, : (0,00) — (0,00) and let L, : R — [0, 1].
Assume that: inf{L(t):t >0} =0 and

lim g, (1) =0;  Ln(ga(t) < O*"(L(t), Vt>0

n—-+00
If each Ly, is nonincreasing, then lim,_, o Ly, (t) =0, for any t > 0.

Proof. Fix t > 0 and € > 0. By hypothesis, there is {5 > 0 such that
L (tp) < e. Since g, (tg) — 0. there is k € N such that: g, (tg) < t for all
n > k. By monotonicity

Ly (t) < Ly (gn (to)) < 0* (L (to)) < e, for n >k
Hence we infer that lim,, o0 Ly (t) = 0, since Ly, (t) > 0. O
Theorem 3.1. Let (X, F,L,*,0) be an intuitionistic Menger metric space
under a continuous t-norm x of H-type and continuous t-conorm { of H-
type. Let ¢ : (0,00) — (0,00) be a function satisfying that: lim,_, 4~ ¢" (t) =
0, foranyt>0. LetT: X x X — X and g : X — X be two mappings with
T(X x X) Cg(X) and assume that for any t > 0,
Er () mu0) (0 (1) 2 Fy(a),g(u) (1) * Fyy),g0) (1)
L) r) (@ (0) < Lo, gty (1) OLg(y)g(0) (£)

for all z,y,u,v € X. Suppose that T (X x X) is complete and that g and T
are weakly compatible, then g and T have a unique common fized point x*,
that is o* =T (x*, %) = g (z*).

Proof. Since T' (X x X) C ¢g(X), there exist two sequences {z,} and {y,}
in X such that

(3'2) 9Tpy1 =T (:Unvyn) and  gypt1 =T (ymxn) for alln € NU {0}
From (3.1) and (3.2) we have

Fg$n7g$n+1 (¢ (t)) = FT(xn_l,yn_l),T(xn,yn) <¢ (t))

2 Fy(an_1),90m) ) * Fyy 1),900m) ()
Lgﬂfn,gmnﬂ (¢ (t)) = LT(xn_l,yn_1)7T(:cn,yn) ((b (t))
< Lg(rn—l)ﬂ(xn) (t) <>Lg(yn—l),g(w) (t)

(3.1)

(3.3)
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and
ngn:gyn+l (925 (t)) = FT(yn,hzn,l),T(yn,rn) (¢ (t))

2 Fytan1)0@n) ) * Fylyn 1), 9m) (1)
Lgynygyn+1 (925 (t)) = LT(ynfl,wn 1), T (Yn,xn) (¢ (t))

< Ly(aa-1)g(an) (1) OLgly,—1).9(ym) ()
It follows from (3.3) and (3.4) that

ngn,gwnJrl (¢n (t)) ngmgyn+1 (‘bn (t))

(3.4)

2 (Fgznrgan (071 (0) * Fognorgun (677 ()
> - > (Fyag gan (1) * Foyo gy (1))
and
Lya,,,gens1 (9" (1) OLgy, gynsr (0" (1))
< ¢ (Lgwn-1.92n (¢n_1 (t)) OLgyn-1,99n (¢n_1 1))
< 0% (Lgag gar (1) OLgyogyn (1))

Let Ey, (t) = Foup g2nia (t)*ngn,gynH (t) and P, (t) = Lgl‘n,gwnﬂ (t) <>Lgyn,gyn+1 (t).
Then

En(¢"(t) > #* (Eac1(¢"71 (1)) =+ = ™" (Eq (1))
Po(o™ (1) < O (Paci (™1 (1)) <+ <O (P (1)

Since ¢" (t) — 0 and sup;~q Eo (t) = 1,inf;9 P, (t) = 0, by lemma (3.1)
and (3.2) we have

lim F,(t)=1 and hm P,(t)=0

n—-+00 n—-+00

Noting that

min { 9Tn,gTn41 (t) N T (t)} > By, (t),

and
max {ngn,gwnﬂ (t) s Lgyn.gynsa (t)} <P (t),
we get that
(3 5) ngr—ir-loo ngn,g:anrl (t) - ngr—&l-loo ngn 9Yn+1 (t) =1, Vt>0
nllg-loo Ly, geni (t) = ngﬂr_loo Lgyngynsr (£) =0, VE>0

For any fixed t > 0, since lim,,_, 1 o ¢" (t) = 0, there exists ng = ng (t) € N
such that ¢™*1 (t) < ¢™ (t) < t. Next we show by induction that for any
k € NU {0}, there exists by € N such that

(3.6)
Fowgznin (9" (1) * Fyy, gy, n (07 (1))
> 4% (Fgwmgmnﬂ (¢n0 (t) — "ot (¢ )) * Fgygynia (¢n0 (t) — g™t (t)))
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and
(3.7)
Lgz,gznik (9" (1)) OLgyn,g9n 1 (™ (1))

<O (Lgan gansr ("0 (1) = 0"71 (1) OLgyngyarr (67 () = 6™F (1))

It is obvious for k = 0 since Fyp,, go, (0™ (1)) = Fgyp.gy, (@™ (t)) = 1 and
Lz, gen (0™ (t)) = Lgy,.gy, (™ (t)) = 0. Assume that (3.6) and (3.7) holds
for some k € N. Since ¢™ (t) — ¢™ 1 (t) > 0, by (IM5) we have

Fyar ganinar (0" (8)) = Fya ganypny (670 (8) = ™7 (1) + ™7 (1))

(38) Z ngn 9Tn+1 ((bno (t) - ¢n0+1 (t))
Fngn-&-l '9Tn+k+1 <¢n0+1 (t)) .

and

(3.9)

L9$n7g$n+k+1 (¢n0 (t)) Lgﬂcn 9Tn+tk+1 (¢no ( ) ¢n0+1 (t) =+ ¢n0+1 (t))
< Lgengrass (8™ (8) — "M (1))
<>Lg$n+1,grn+k+1 (¢n0+1 (t))

It follows from (3.1), (3.6) and (3.7) that

TR A O)
= P (@ ,y0) T (@0t k) (¢n0+1 (¢ ))
(3.10) > Fg:cn gz, (0" (1) * Fyyp gy, 1. (0™ (1))
> 5% (Fyan gy (67 (8) — 97 (1))
% Fgygyasn (67 (t) — "ot (1))

and

L91n+1 19T n4k+1 (¢n0+1 (t))

LT(zn yn) T l’n-&-k yn+k (¢n0+1 )
(

(3.11) < Ly ganr (9™ () OLgy, gynyr (8 (1))
< O (Lgan,gansn (6™ (1) — ()
OLgy,.gyner (8™ (1) — )

Now from (3.8), (3.9), (3.10) and (3.11) we get

Fgwn 9Tn+k+1 (¢n0+1 (t))
(3.12) > Fyegunea (07 (1) = wo“ <t>>

)

¢n0+1

ot
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and
Lg$n79$n+k+1 (¢n0+1( ))
(3.13) < Lgay 92041 (¢n0 (t) ¢n0+1 t) )

o (o (g G5 )

Similarly, we have
ngmgyn+k+1 (¢n0+1 (t))
> [ (¢n0( ¢no+1 t )
(3.14) 9Yn:gYn+1

(o (o G @) )

Lgyn,gyn+k+l (¢n0+1 (t))
(3.15) < Lgyn,gyn1 (¢no (t) — ¢n0+1 (t))

be [ Lgzngrais (070 (1) — 9™t (1))
0 (<> < Oggyn!igynu (¢n0 (t) B ¢n0+1 (t)) ))

From (3.12), (3.13), (3.14) and (3.15) we conclude that

Fowngvniiis (8" () * Foyp gy irsr (97 (1))
> Fyapgenp (070 (£) = 0" (1)) * Fyy gynyn (070 () — ™07 (1))

* [*Qbk (Fyonganss (6™ (t) = pot! (1)) * Foyn.gynia (8™ (£) — gt (t)))}
= 5 By ganiy (070 (1) = 6"070 (1)) % Fgy gy (670 (8) = ™07 (1))

and

Ly gz (9" () OLgyn.gyaiia (97 (1))
S Lgxnvgwnle ((z)no (t) - ¢n0+1 (t)) <>L9yn79yn+1 (('bno (t) - ¢n0+1 (t))

0 [0 (Lysugrs (" (1) = 6" (8) L gy (670 (8) = 6™ (1))

_ <>2bk+1 (ngn,gxn+1 (¢no (t) _ ¢n0+1 (t)) OLgyTL7gyn+1 (¢no (t) — ¢n0+1 (t))) .

Since bi4+1 = 2b, +1 € N, this implies that (3.6) and (3.7) holds for £+ 1.
Therefore, there exists by, € N such that (3.6) holds for each k£ € NU {0}.

Now we prove that {1 (z,,yn)} and {T (yn,zn)} are Cauchy sequences
in X. Let t > 0 and € > 0. Since lim,,—, 4o ¢" (t) = 0, there exists n; =
ny (t) € N such that g™+ () < ¢™ () < t

Since {*" : n € N} is equicontinuous at 1 and (1) = 1, there is 6 > 0
such that

(3.16) if se€ (1—46,1], then *"(s) >1—¢ forallneN

and
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and {0" : n € N} is equicontinuous at 0 and ¢ (0) = 0, there is 6 > 0 such
that

(3.17) if s €[0,0), then ¢" (s) <e forallmeN
By (3.5), one has
im Fyp, genis (¢”1 (t) — oMt (t)) =

n——+oo
nllff Foym g9ni1 (¢n1 (t) — g™t (t)) =1
and
W Lye, gay (67 (1) = 91 (1)) =
Hm Lgy, gy s (6 (1) — Ml (t)) =0.

n——+o0o

Since * is continuous, there is N € N such that for all n > N,
ngn,g:vn+1 (¢n1 (t) - ¢n1+1 ( )) * ngn,gyn+1 (¢n1 (t) - ¢n1+1 (t)) >1- 4
Ly genia (9" (1) = 6™ (1)) OLgyp gynra (9™ (1) =™ HH (1)) <0
Hence, by (3.6), (3.7) (replacing ng with n1) and (3.16), (3.17), we get
Foengann (0 (1) * Foyp gy (0™ (1)) > 1—¢
Lgay.gnis, (0" (1)) OLgy,.gynn (0™ () <€
for any k € NU{0}. Since
min {ngn,gxn+k (@™ (1)) vngn,gynM (o™ (t))} >
Foar gz (@™ (1)) * Foygunix (o™ (1))
and
max { Lyz,, gz, r (9" (1)) s Loy ,gynin (6™ (8))} <
Lg$n19$n+k (¢n1 (t)) OLgynugyﬂﬁH@ (¢n1 (t)
one has
min { Fye, gz, 45 (0™ (8)) s Fyyo gy (07 ()} > 1—¢
max {Lgxmg:cwrk (@™ (1)), Lgy, . gymix (™ (t))} <e
By monotonicity of F' and L,we have, for any k € NU {0},

min { Fya,, gz, i1 (£) s Foyngyar (1)} 2
min { Fye g, (6 (D) Fgyogyn s (6" ()} > 1= 2
and
max { Loz, gz, s (1) s Loyagynrn ()} <
max {Lgxmgﬂmrk (0" (t)) s Lgyn,gyn 1 (¢ (t))} <e.

Thus {gz,} and {gyn}, i.e., {T (zn,yn)} and {7 (yn,x,)} are Cauchy
sequences in X. Since T (X x X) is complete and T (X x X) C g (X),
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there exist a,b € X such that {T" (z,,yn)} converges to ga and {T" (yn,xn)}
converges to gb.

Next we prove that ga = T (a,b) and gb = T (b,a). Let t > 0; since
lim,, o0 @™ (t) = 0, there exists na = na (t) € N such that ¢™2 (¢ (1)) <
¢ (t). By (IMb) and (3.1), we have

Fpap)ga (¢ (1))
= FT(a,b),T(zn+n2,yn+n2) (‘75”2“ ))
(3.18) * F, (IMWWM( ) — ™t (1))
> Foa,gening (0" (1) * Fgb gy,sn, (92 ()
*Er (o i) ga (6 (1) = " (1))
and
T(a,b),ga (@ ()
< Ly, B).T (Tt g Ynsns ) (¢ (1))
(3.19) OL (g ety )oga (0 (D) = @1 (1))

< Lyagrnn, (6 (1) OLgh gy, (67 (1))
OLT(2n+n2,yn+n2),ga ((]5 (t) — ¢n2+1 (t)) '

Note that {gz,} — ga,{gyn} — gb and {T (Tntny, Yn+n,)} — ga. Thus,
letting n — 400 in (3.18) and (3.19), we have

Frapge (@(t) >1x1=1
L(ap)ga (¢ (1) <000 =0

By induction we can get

FT(a,b),ga (d)n (t)) >1
LT(a,b),ga (d)n (t)) <0
By (IM2) one has ga = T (a,b). Similarly,we can prove that gb =T (b, a).
Next we prove that if (a*,b*) € X x X is another coupled coincidence
point of g and T', then ga = ga* and gb = gb*. In fact, by (3.1) we have
Fga,ga* (¢ (t)) = FT(a,b),T(a*,b*) (¢ (t)) > Fga,ga ( ) * gb,gb* ( )
Fopg0- (0 (1)) Fra),r@ra) (0 () > Fyagar () * Fgp go- (2)

and

Lga,ga* (¢ (t)) = LT(a,b),T(a*,b*) (‘b (t)) <L
Logpgo- (9 (1) = Lra) e (@{) < Lga ga* (t) OLgb g (1)
It follows that
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and
Lyga,ga (& (1)) * L gp,gb (¢ (1)) > = (Lga,ga* (t) * Lgp, gb (1)) .

By induction we get
min{Fga,ga (" (1)), F gb,gb* (" (¢ ))}
= Fgaga (8" (1)) * Fgpgor (#" (1)) = * (Fga,ga* () * Fgbgb- (1))
and
max { Lgq gax (¢" (t)), Lgpgo+ (0" (1))}
< Lga,ga* (¢n (t)) <>Lgb,gb* ((ﬁn (t)) < 0271 (Lga,ga* (t) O Lgb,gb* (t)) :

It follows from lemma 3.1 and (IM2) that ga = ga* and gb = gb*. This
shows that g and T have the unique coupled point of coincidence.
Now we show that ga = gb. In fact, from (3.1) we get

Fga,gyn (¢ (t)) = FT(a,b),T(yn,l,zn 1) (¢ (t))

320) > Fyagn (8) % Fypgen ., (1
Fgbgen (0 (1) = Fr@.a) T 1.n1) (@ (¢))
2 Fab g, (t) * Foa,gy,—1 (t).
and
Lga,gy, (¢ (t)) = L1(ab) 0 (yn-1,20-1) ( (t))
(3.21) < Lga,gyn—1 (t) OLgb gz, (t)
Lgb gz, (9 () = Lrgp.a)T(xn_1,yn-1) (@ (1))
< Lgbge, (t )OLga 9Yn—1 (t)
Let

Fo () = Fyp ga, (t) * Fga gy, (t) and Ly, (t) = Lgp gz, (t) OLga,gyn (1) -
From (3.20) and (3.21) it follows that
Fo (@7 (1)) 257 (Pt (077 (1)) 2 -0 2" (Fo (1))
Ly (¢" (1) < 0 (Lp—1 (¢" 71 (1)) < -+ < 0*" (Lo (1))
(

By Lemma 3.1 we get lim,,—, 1o F, (t) = 1, and lim,,—, 4+ Ly, (t) = 0, which

implies that

im Fypge, () = Hm Fyq gy, (1) =1

n—-+00 n—-+00
ngrj}oo Lgbge, (t) = ngr}rloo Lyga,gy, (t) =0

Since {gx, } converges to ga and {gy, } converges to gb, we see that gb = ga.
Now let u = ga. Then we have u = gb since ga = gb. Since T and g are
w-compatible, we have

gu=g(ga) =g (T (a,b)) =T (ga,gb) =T (u,u).
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which implies that (u,u) is a coupled coincidence point of 7" and g. Since
T and g have a unique coupled point of coincidence, we can conclude that
gu = ga, i.e., Therefor, we have v = gu = T (u, u).
Finally, we prove the uniqueness of a common fixed point of T" and g.
Let v € X, be such that v = gv =T (v,v). By (3.1) we have

Fuv(o(t) = Fruww,rw0) (@ (1) = Fougo (t) * Fgugo (t) = +° (Fuw (1)) -

and

Lu,v (¢ (t)) = LT(u,u),T(v,v) (¢ (t)) < Lgu,gv (t) <>nggv (t) = <>2 (LU,U (t)) :
which implies that
Fup (9" (1)) > +20 (Fuw (1))
Ly (6" (1)) < 0% (Luw (1))
By Lemma 3.1 and (IM-2), we see that w = v. This completes the proof. [

Theorem 3.2. Let (X, F,L,*,Q) be an intuitionistic Menger metric space
under a continuous t-norm of H-type and continuous t-conorm of H-type.
Let ¢ : (0,00) = (0,00) be a function satisfying that: lim, o ¢™ (t) = 0o,
for any t > 0. Suppose that T : X x X — X and g : X — X are two
mappings such that T (X X X) C g(X) and assume that for any t > 0,

FT(x,y),T(u,v) ( ) x) g(u) ( ( )) (y),9(v) (¢( ))
LT(x,y),T(u,v) ( ) ( ( )) ),g(v) (¢ (t))
for all x,y,u,v € X. Suppose that T(X x X) is complete and that g and

T are weakly compatible, then g and T have a unique common fixed point
z* € X, that is o* =T (x*,2%) = g (7).

(3.22)

Proof. Since T' (X x X) C g (X),we can construct two sequences {z,} and
{yn} in X such that

(3-23) 9Tny1 =T (:Ena yn) and gypy1 =T (yna xn) for alln € NU {0}
From (3.22) and (3.23) we have

Fyzngzai1 (8) = Fr, y. 1) T@num) (&)
> Fy(wn_1),90n) (@ (1) * Fyiy,_1),905n) (& (1))

3.24
( ) Lgxn,gmn+1 (t) = LT($n,1,yn71)7T(mn7yn) (t)
< Ly(,_1).g(ea) (2 (1) OLg(yn_1).g(m) (& (1))
and
Foyn.gynir (t) = FT(yn 15@n—1)T (Yn,Tn) (t)
(325) Z E (Z‘n 1 ’g Tn (¢ t)) * F yn 1 ,g(yn) ((b (t))

Lgyn,gynﬂ (t) - LT(yn—1,xn 1

)
)
)
< Ly ) (@

7T(yn7xn) <t)
( ( )) <>Lg(yn_1),g(yn) (¢ (t))

xn—l)yg(xn
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Now, let

E, (t) = Foap gonia (t) * Foy.gunia (t)
and

PTL (t) = ngn,gzn+1 (t) <>L9ymgyn+1 (t) .
From (3.24) and (3.25) we get
Epi1(t) > En (¢ () and Poyi (t) < Po (¢ (1)) -
It follows that
Epy1 (t) >+ (By (¢ (1))
<

(3:20) Pat1 (t)

2 (B (6 (1))
< OB (9" (1))

Since

lim By (t) = lm Fypgge, (8) * Fgyogu (1) =1,

t—+o00 t——4o00

tEEloo Py (t) = hﬁm Lgao,gar () * Lgyo,gy, (£) =0,
T —

P 7 (8 = 00

for each t > 0, we have

lim E;(¢"(t))=1and lim P (¢"(t)) =0.

n—-+00 n—-+00

By Lemma 3.1 we have

lim E,(t) =1, forallt>0
(3.27> n—-+00
EIE P,(t)=0, forallt>0

For any fixed ¢ > 0, since lim,,—, o ¢" (t) = 00, there exists ng = ng (t) € N
such that ¢"0tL (t) < ¢ (t) < ¢

Similarly, since limy, o0 @™ (¢™0 T () — ¢™ (t)) = oo, there exists mg =
mo (t) € N such that ¢™o (¢"0th(t) — gm0 (t)) > @m0+l (¢) — ¢™ (t). By
(3.24) we have
(3.28)

ngn+m0’gITL+m0+1 (¢n0+1 (t) - ¢no (t))
> Enimo (¢ (671 (1) — ¢™ (1))

210 (B (¢ ("0 (1) — 9™ (1))
210 (B (9707 (8) — 9™ (1))
Lgﬂcn+m07gfcn+mo+1 (‘ano“ t) —
< <>2mo ( (¢mo (¢n0+1 (t) —
02 (P (671 1) = 4 (1)

AV VAR AVAR!

¢”° ( )) <Poimo (& (€71 (1) — 6™ (1))

IN N
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Next we show by induction that for any £ € NU {0}, there exists by € N
such that

g Fresmommng (9707 (0) 2 (B, (67 (0 ™ (1)
. L91n+mo 9Tn+mg+k (¢n0+1 (t)) < <>bk (P” (¢n0+1 (t) - ¢n0 (t)))

and

ngn+m0 IYn+mo+k (¢n0+1 (t)) 2 *bk (E" (¢n0+1 (t) - ¢n0 (t)))
Lyt gnsmyi (@70 (1) < O (P (674 (1) — 9™ (1))

This is obvious for k£ = 0 since

Fg$n+m0 »9Tn+mg (¢n0+1 (t)) = ngn+m0,gyvz+m0 (¢n0+1 (t)) =1

(3.30)

and

Lgmn+m0791n+mo (¢n0+1 (t)) = Lgyn+m0,gyn+m0 (¢n0+1 (t)) = 0.

Assume that (3.29) and (3.30) holds for some k € N. By (3.22), (3.29),
(3.28) and (IM-5), we have

¥ F g 9T s+ (¢n0+1 (t))
= Ftnimg gtnsmgrnis (@07 () = 0™ (8) + 6™ (1))
> Fyenimegtnimoin (9707 (8) = 0™ (1)) * Fyzp o t1.92n imgrnir (87 (£))
= Fyanymggnimgss (@707 (£) — ¢ (1))
* FT(

no
$n+m0:yn+m0):T(xn+m0+k7yn+m0+k) (¢ (t))
1
2 ngn+moygzn+m0+1 (¢n0+ (t) - ¢n0 (t))

* (F 9Tt mg 9T +mo+k (¢’n0+1 () * F, GYntmo IYn-+mo+k (¢n0+1 (t)))
Bttt (6777 (8) = 670 () + (2% (Ep (9707 (8) = 6™ (1))
> 520 (B, (6" (1) = 6™ (1)) + (2% (En (67 (1) = 6™ (1))
= 2ot (E, (¢ (1) — 67 (1))
and
Lgtnsmg g emgsinn (0707 (1))
= Lot mggnimoprs (070 (8) = 9™ (1) +¢™ (1))
< Lysyimgganimyrs (0" (#) = 0" (8)) OLgwn g 1.95m 1 mgsnss (67 (1)
= Lyo s g g smonr (6771 (1) = 67 (1)
OLT (21t mg o ) T (@ mg s kstimrmo ) (9 (E))
< Lgan g gnmgir (8771 (8) = 6™ (8)) O(Lgan g gwn g (677 (1))
OLgyn o gunmgs (677 (1))

v
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< Ly pmg gmsmg 1 (0707 (1) = 6™ (1)) O (<>2bk (B (407 (t) — o™ (t))))
< 070 (By (9" (1) = 9™ (1)) 0 (0% (Bw (9" (1) — 9™ (1))
= 020t (E, (67071 (£) — ¢™ (1))

Similarly, we can prove that

Fggnimggimsmg s (97071 (8)) = #2005 (B, (707 (1) — ¢™ (1)) ,

Ly g gtimsmgiss ("7 (£)) < 02000 (B, (gm0F! (1) — ¢"0 (1)) .

Since bry1 = 2(mo+br) € N, (3.29) holds for k + 1. Therefor, there
exists by € N such that (3.29) holds for all £ € NU {0}.

Let t > 0 and € > 0. By hypothesis, {#" : n € N} is equicontinuous at 1
and * (1) = 1, there is § > 0 such that

(3.31) if se(1—-4,1], then «"(s) >1—¢ forallneN

and {0" : n € N} is equicontinuous at 0 and ¢ (0) = 0, there is 6 > 0 such
that

(3.32) if s €[0,d), then 0" (s) <e forallmneN
Since by (3.20)
lm  E, (™7 (1) — ¢™ (1) =1,

n—-+o0o

lm_ P, (¢ (t) — ¢™ (1))

n—+oo
there is Ny € N such that for all n > Ny,
By (¢ () — o™ (1)) € (1 - 4,1],
Py (@™ () — ¢™ (1)) € [0,6).
Hence, it follows from (3.29),(3.30),(3.31) and (3.32) that
Foeimo 9nsmg+i (o™ (1)) = F gy tmy 9ynsmg+i (0™* (1) > 1-¢
Liger my g smo+r (6™ (1)) OL gyt meygun-rmo -+ (@™ (1) < e
for all n > Ny and any k € NU{0}. Noting that (3.17) and (3.18), we have
min {F

9Zn+mo+ng+1:9Tn+mg+ng+1+k (t) 7ngn+7rL()+n0+1:gyn+m0+no+1+k (t)}

2no+1 1 1
> x0T <F9$n+m079$n+m0+k (¢n0+ (t)) * F gyt g 9Ynmg (¢n0+ (t)))

>1—¢

0,

max {Lgxn+m0+n0+17973n+m0+n0+1+k (t) 7Lgyn+m0+n0+l7gyn+m0+n0+1+k (t)}

2no+1 +1 +1
< Qo (Lgxn+m0,gxn+m0+k (¢™ 1 (1) O Ly o ¥nmg (470 (t)))
<eE.
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This implies that for all k£ € N,
Fo2m,92m 41 (t) > 1—¢ and Foym,gymn (t)>1-¢
Ly g (t) < e and Loy ,gymn (t) <e

where m > Ny + ng + mg + 1. Thus {gx,} and {gy,}, i.e, {T (zn,yn)}
and {7 (yn,xn)} are the Cauchy sequences. Since T (X x X) is complete
and T (X x X) C g(X), there exists (a,b) € X x X such that {T" (xy, yn)}
converges to ga and {7 (yn, z,)} converges to gb.

Next we prove that ga = T (a,b) and gb =T (b,a). By (IM-5) and (3.22),
we have for any ¢t > 0,
FT(CL,b),T((En,yn) (t) Z Fga,g:tn (¢ (t)) * ngvgyn ((?b (t))
LT(CL,b),T((En,yn) (t) S Lgavgx’n ((;5 (t)) OLgb,Qyn (¢ (t))
Since limy, ;4 o0 gy, = ga and lim,_, 1 o gy, = gb, letting n — 400 in (3.33),
we have lim,, 100 T (2p, yn) = T (a,b). Noting that lim, 100 T (Tpn, yn) =
ga, we have T (a,b) = ga. Similarly, we can prove that T (a,b) = gb.

Let u = ga and v = gb. Since g and T are weakly compatible, we have
gu =g (ga) = g (T (a,b)) =T (ga,gb) =T (u,v)
gv =g (gb) =g (T (b,a)) =T (gb,ga) =T (v,u).
This shows that (u,v) is a coupled coincidence point of g and T. Now we
prove that gu = ga and gv = gb. In fact, from (3.22) we have

Fgu,gxn (t) = FT(u,v),T(mn,l,yn,l) (t) > Fgu,gxn—1 (¢ (t)) * ng,gyn—1 (¢ (t))
Lgugan (1) = Lr(uw) T(wn—1,9n1) () < Lguga,—1 (¢ (1)) OLgu,gy,—, (@ (1))

and

(3.33)

(3.34)

gv,gyn (t) U K7 T(yn 1,Tn— 1) (t> Z F V,9Yn—1 ( (t)) * Fgu,ga:n,l (¢ (t))
Lguv.gy, (t) = W), T(yn1,0m-1) () < Lgv,gy, 1 (¢ (t)) OLgu,ga, 1 (¢ (t)) -
Let F, (t) = Fgu gTn ( ) % Fyugy, (1), and Ly (t) = Lgu ga, (t) OLgv,gy, ().

Then we have

Fu(t) > #*(Foo1 (o) = -+ > " (Fo (¢" (1))
Ln(t) < O*(Ln-1(9 (1)) <--- <0 (Lo (6" (1))
Since limy, 40 @™ (¢ ) oo and *, { are continuous, we have
21 (Fo (¢ (1)) = " (Fyugao (6" (1)) * Fyugyo (4" (1)) = 1 as n — 400
and

0% (Lo (6" (1)) = 0*" (Lgv.gao (8" (1)) OLgu,gyo (#" (1)) = 0 as n — +o0.

This shows that F), (t) - 1 as n — oo, Ly, (t) — 0 as n — oo, and so we
have gu = ga and gv = gb. Therefore, we have gu = u and gv = v. Now,
from (3.34) it follows that u = gu = T (u,v) and v = gv =T (v, u).
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Finally, we prove that v = v. In fact, by (3.22) we have, for any ¢ > 0,

Fuw () = Frww,rww () 2 Fgugo (¢ () * Fgogu (¢ (1))
=" (Fy ( ( )

Luw () = Lr(uw) r(wu) (8) < Lguge (¢ (1) OLgu,gu (6 (1))
= 0% (Luw (0 (1))

By induction we can get F,, (t) > #* (Fu, (¢" () and Ly, (t) <
0% (Lyp (9™ (t))). Letting n — +oo and noting that ¢" (t) — oo as n —
+00, we have Fy, , (t) =1 and Ly, (t) =0 for any ¢ > 0, i.e., u = v.

Therefor, u is a common fixed point of g and T'.

The uniqueness of w is similar to the final proof line of Theorem 3.1. This
completes the proof. O

In Theorem 3.1 and Theorem 3.2, if we let gz = x for all z € X, we get
the following result.

Corollary 3.1. Let (X, F,L,*,Q) be an intuitionistic Menger metric space
under a continuous t-norm of H-type and continuous t-conorm of H-type.
Let ¢ : (0,00) — (0,00) be a function satisfying that: limy, o ¢™ (t) =0
foranyt > 0,T: X xX — X be a mapping, and assume that for anyt > 0,

FT(m,y),T(u,v) (¢ (t)) > Fy U (t) (t) )
LT(m,y),T(u,v) (¢ (t)) < LﬂC u (t) Ly,v (t)

for all x,y,u,v € X. Suppose that T(X x X) is complete. Then T has a
unique fived point z* € X, that is o* =T (z*, z*).

Corollary 3.2. Let (X, F,L,*,Q) be an intuitionistic Menger metric space
under a continuous t-norm of H-type and continuous t-conorm of H-type.
Let ¢ : (0,00) — (0,00) be a function satisfying that: lim,_, 4o ¢™ (t) = 0o
foranyt >0,T: X xX — X be a mapping, and assume that for anyt > 0,

Fr(z) T(uw) (£) = Fru (¢ (1) % Fy o (6 (1))
Lp(z) (uw) ) < Lo (¢ () 0Ly (6 (1))

for all z,y,u,v € X. Suppose that T (X x X) is complete. Then T has a
unique fized point x* € X, that is ™ =T (z*, z*).

Now, we illustrate Theorem 3.1 by the following example.

Example 3.1. Let X = [0, 3)U{7} and zxy = min (z,y) , 20y = max (z,y)
for all x,y € X. Define F,, (t) = m and Ly, (t) = tf';i' for all
z,y € X and t > 0.Then (X, F, L, *, ) be an intuitionistic Menger metric
space,but it is not complete.Obviously, (X, F, L, *, ¢) is not complete. Define
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two mappings g: X — X and T : X x X — X by

2 ifzel0,55],
g(x) =< x, if:cé(%,é)
i, ifx:i,
and
& if 1
T(m,y)={1?’ toelbo
1287 1f$—1

It is easy to see that g and T are not commuting since g (T (i, i)) £
T(g( ) ( )),T (X x X) C g(X), and T (X x X) is complete.
Let ¢ : (0, +00) = (0, +00) by

Then lim,,—, o ¢" (t) = 0 for any ¢ > 0.

From T (z,y) = g(z) and T (y,z) = g(y), we can get (z,y) = (0,0)
and we have g7 (0,0) = T (g0, g0) , which implies that 7" and g are weakly
compatible.The following results is easy to be verified:

t tt
. >mind —/—
X+t_mm{Y+t’Z+t} o X smax{¥,Z},
X Y z VX,Y,Z >0, t>0.
X+t - "\Y e Z 1t

By the definition of F, L, ¢ and result above,we can get inequality (3.1)
FT(gc,y),T(u,v) (¢ (t)) > Fg(m),g(u) (t) * Fg(y),g(v) (t)

and
LT(m,y),T(u,v) (¢( )) <L g(x) ( )<>L ( )
Which is equivalent to the following

(**) 2|T (2,y) — T (u,v)| < max{|gz — gul, lgy — gv|}

Now, we verify inequality (*).for ¢ # 1; we shall consider the following four
cases:

Case 1: Let z # i and u ;é . In this case there are four possibilities.

Case 1.1: Let z € [0, 16] Then we have

r u
Z\T(w,y)—T(u,v)\ = 176_7 =—-|-—=| < Z_Z
y U}
< _ =
< max{ ‘ ‘ 1
< max{|gx — gul,|gy — gv|} forall y,v e X

So, (*) holds.
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Case 1.2: Let x € [0, %] and u € (%6, %) Then

2T (,9) - T(wo)| = 2|5 -] = 2|5 -4 <5 |- 5
< max{‘aﬂ—E ,‘g—g}
- 41714 4
< max{|gx — gul,|gy — gv|} forall y,ve X

Case 1.3: Let = € (%, %) and u € [0, 1—16] This case is similar to case 1.2.
Case 1.4: Let x € (%,%) and u € (%,%) Then
T U 11z w T u
2|T (z,y) — T (u, :27_7):,f_f<f_7
T(@y) = T (u,)l 16 161 212 2l=1171
y v
< {53
< max{|gx — gul,|gy — gv|} forall y,v e X

Case 2: Let z = i and u = 1. Then we have

x u
2T (w,y) = T (u,0)| = 2@_@‘:
1 1
< max{‘g<4>—g(> a|9y—gv|} for all y,v € X

Case 3: Let z = % and u # i. Then we have
Case 3.1: If u € [O, %], then

1 1 "

20Tl = 2|7 (50 =T o] =25~
1 U 1 1 wu
— - = — — U < |= — —
64 8| |8 14 4

Case 3.2: If u (%, %), then

1 U

T (z,9) = T (u,v)] 128 16| = |64~ 8

1
< el ()

Case 4: x # i and u = %. This case is similar to case 3.

It is easy to see that (0, 0) is a coupled coincidence point of g and T'. Also,
g and T are weakly compatible at (0,0). By Theorem 3.1. we conclude that
g and T have a unique common fixed point in X. Obviously in this example,
0 is the unique common fixed point of g and T in X.

- —u

8

‘ 1
<

<1
_4U

,gy—gv|} for all y,v € X
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4. APPLICATION TO INTEGRAL EQUATIONS

As an application of the coupled fixed point theorems established in sec-
tion 3 of our paper, we study the existence and uniqueness of the solution
to a Fredholm nonlinear integral equation.

We shall consider the following integral equation,

b
(41) = (p) = / (K1 (pq) + K2 (p.0) [ (002 (0)) + 9 (q.2 ()] da + B (q)

a

for all p € I = [a,b].
Let © denote the set of all functions 6 : [0, 1] — [0, 1] satisfying

(i9) 6 is non-decreasing,
(iz9) 0 (p) < p.
We assume that the functions Ky, Ko, f,g fulfill the following conditions:
Assumption 4.1.
(i) K1(p,q) >0 and K3 (p,q) <0 for all p,q € I,

(7i) There exists § € O such that for all z,y € R with > y, the following
conditions hold:

(42) 0< flg,z)— flgy) <A (z—y)
and
(4.3) —pb (z —y) < g(g.2) —g(q,y) <0,
(iid)
b
(1.4 max (e sup [ 1) (.0) = I ()} da <

a

Consider the integral equation (4.1) with Ky,Ks € C (I x I,R) and h €
C (I,R). Suppose that Assumption 4.1 is satisfied. Then the integral equa-
tion (4.1) has a unique solution in C (I, R).

Proof. Consider X = C (I,R). It is easy to check that (X, F,L,*,Q) is a
complete intuitionistic Menger metric space with respect to the distribution
distance

t [z —y|

- L, =TI vyryeX, t>0

Fpy(t =

with
x*y =min (z,y),z0y = max (z,y) Vr,y € X.
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Define now the mapping T': X x X — X by
/K1 p,q (@) +9(a.y ()] dq
/ K (p.q (9)) +9(q,2(q))] dg + h (p)

for all p € I and ¢ (t) = % for all ¢ > 0. Now, for all z,y,u,v € X, using
(4.2) and (4.3), we have

(4.6) T(ﬂf y) (p) = T (u,v) (p)

/Klp, 0.7(0) ~ f (a.u(2))
+9(a,y(a) — g(a,v(q))]dg
+ /b K> (p.q) [f (0,9 (@) = f(g,v(q))

' +9(g,2(q)) — 9 (q,u(q))]dg

- [ K100 [0 @ @) - S0 u @)
—(9(g,v(0)) — 9(a:y(9)))]dg

[ Km0 [ ) - 1 @)
~(s(a x(q))—g(q,u<q>>>]dq
< [ K. 06 @)~ 1 @) 4000 0) - @]

—/ K> (pra) N (0 a) — /() + 6 (0) —  (9)))
Since the function @ is non-decreasing and so we have

0 (x(q) —u(q) <0(z(q) —ulq)l)
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and

0 (via)—y(q) <8(vie) -y,
hence by (4.6), in view of the fact Ks (p,q) < 0, we get

(4.7) T (z,y) (p) = T (u,v) (p)]

b
< / Ky (0,0) 70 (12 (q) — u (@)]) + 16 (Jv (q) — v ()])] da
b
—/ K (9, q) D ([0 (0) = (@)]) + 16 (| (g) — u (q)])] dg

b
< / K1 (p,q) [max {\, 1} 0 (|2 (q) — u (q)])

+max {, 1} 0 (lv(q) —y (9)])] dg

b
- / K> (p, q) [max {\, 1} 0 (jv () — y (9)))
+max A, 1} 0 (|2 (q) — u (q)))] dg

as all the quantities on the right hand side of (4.6) are non-negative. Now
by using (4.5), we get

(4.8) T (2, y) = T (u,v)]

b
< max {, 4} / Ky (p.g) — K2 (p, )] da
18 (12 (9) — u (@) + 6 ([ (a) — 9 (@)

b
Slnax{k,u}su?b/‘[Bﬁ(p7Q)_'Rb(p#ﬁ]dq
peE a

102 (@) ~u(@)]) + 0 (v () ~ y (@)
_ 0z —ul) +6 (v~ y)
= 8 9

Thus
0|z —ul) +6(v—yl)
4

(49> 2‘T(1‘,y) _T(U7U)‘ <
Now, since 6 is nondecreasing, we have

0(lz —ul) <O (Jx—wul) +0(y—vl),
0(ly—vl) <0z —ul) +0(y —vl),
which, by using (iig), this implies

0 (lz —u)) +6(y —vl)
2

(4.10)

<0 (Jo —ul + [y —v])

(4.11) <l|z—ul|+ |y — vl

< 2max {|z —ul, [y — [},
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and so

@iz AW ZD gia—uly —o))
Thus, by (4.9) and (4.12), we get

(4.13) 2|T (z,y) = T (u,v)| < max{[z —ul, |y — v}

Now, by (4.13) and (xx), it follows that

t
Freyrwe) (0 (0) = Frey)mwo) <2>

£+ max ([ — ul, [y — o}

t t
min )
{t+|€vu| tﬂyv\}
min {Fy , (t), Fy, ()},

t
L7 (09,7 (u0) <2>

T (z,y) = T (u,v)|
SHIT (2, y) = T (u,0)]

2|T (z,y) = T (u,v)|
t+2|T (z,y) — T (u,v)|

max {|z — ul, ly — v[}
t + max {|z —ul, |y —v|}

o —ul |y —vl
max ,
t+ |z —ul’ t+|y—vl

< max{Ly, (t), Ly (1)}

Y

v

and

L(z0) T (u0) (@ (1))

IN

Thus

Pz Tuw) (@ (1) = Fru (t) * Fyo (1)
and

LT(m,y),T(u,v) (¢ (t)) < LLU (t) <>Ly,v (t)
which are the conditions in (3.1), show that all hypotheses of corollary 3.1
are satisfied.

This proves that T has a unique fixed point a € X, that is, a = T (a,a)

and therefore a € C (I,R) is the unique solution of the integral equation
(4.1). O
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